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Abstract 24 

This paper examines the ability of coupled global climate models to predict decadal 25 

variability of Arctic and Antarctic sea ice. We analyze decadal hindcasts/predictions of 11 26 

CMIP5 models. Decadal hindcasts exhibit a large multi-model spread in the simulated sea ice 27 

extent, with some models deviating significantly from the observations. For the models having 28 

large biases and using full-field initialization, the predicted sea ice extent quickly drifts away 29 

from the initial constraint, deteriorating the decadal predictive skill. The anomaly correlation 30 

analysis between the decadal hindcast and observed sea ice suggests that in the Arctic, for most 31 

models, the areas showing significant predictive skill become broader associated with increasing 32 

lead times. This area expansion is largely because nearly all the models are capable of predicting 33 

the observed decreasing Arctic sea ice cover. Sea ice extent in the north Pacific has better 34 

predictive skill than that in the north Atlantic (particularly at a lead-time of 3-7 years), but there 35 

is a re-emerging predictive skill in the north Atlantic at a lead-time of 6-8 years. In contrast to 36 

the Arctic, Antarctic sea ice decadal hindcasts do not show broad predictive skill at any time 37 

scales, and there is no obvious improvement linking the areal extent of significant predictive skill 38 

to lead-time increase. This might be because nearly all the models predict a retreating Antarctic 39 

sea ice cover, opposite to the observations. For the Arctic, the predictive skill of the MMEE 40 

outperforms most models and the persistence prediction at longer time scales, which is not the 41 

case for the Antarctic. 42 

  43 
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1. Introduction 44 

Decadal climate prediction is a new and rapidly evolving research area driven by societal 45 

demand for climate information to inform climate adaptation strategies (e.g., Meehl et al., 2009, 46 

2013; Vera et al., 2010). As a boundary between the ocean and atmosphere, sea ice plays an 47 

important role in the climate system and acts as an important indicator of climate change through 48 

dynamic and thermodynamic processes and various feedbacks (i.e., albedo, insulation and 49 

buoyancy). Thus, sea ice simulation and prediction is one of the most challenging and important 50 

issues in decadal climate prediction, i.e., Meehl et al. (2009) emphasized the importance of sea 51 

ice treatment in climate models as large uncertainties remain for decadal climate prediction. 52 

In the past few decades, Arctic sea ice has been declining (e.g., Serreze et al., 2007; Arctic 53 

Report Card, 2015). Trends in Arctic sea ice extent are negative for all months (e.g., Comiso, 54 

2008, 2012; Cavalieri and Parkinson, 2012) largely due to thinning and loss of the perennial sea 55 

ice cover (Kwok et al., 2009), but are largest at the end of the summer melt season. September 56 

Arctic sea ice extent has declined by 0.87×10
6
 km

2 
for the period 1979-2014, with a pronounced 57 

decreasing trend of sea ice concentrations in the arc extending from the Beaufort Sea to the 58 

Barents Sea (> 95% significance, Fig. 1a). The possibility of an ice-free Arctic in the coming 59 

decades (Stroeve et al., 2007, 2012; Boé et al., 2009; Wang and Overland, 2009, 2012; Zhang, 60 

2010; Massonnet et al., 2012; Liu et al., 2013) would have profound impacts on Arctic maritime 61 

activities (e.g., opening of shorter shipping routes) and ecosystems (e.g., changing solar radiation 62 

in the upper ocean and influencing primary productivity), and extreme weather and climate in 63 

mid- and high-latitudes (e.g., Liu et al., 2012; Francis and Vavrus, 2012; Smith and Stephenson, 64 

2013; WWRP/PPP, 2013; Stroeve et al., 2014). 65 
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By contrast, Antarctic sea ice has been expanding (e.g., Liu et al., 2004; Turner et al., 2009; 66 

Comiso et al., 2011; Parkinson and Cavalieri, 2012). Trends in Antarctic sea ice extent are 67 

positive for all months. Unlike the almost uniform Arctic sea ice decreases, the trends in 68 

Antarctic sea ice concentrations show strong regional variations, although the NASA's Ice, 69 

Cloud, and land Elevation Satellite showed that Antarctic sea ice thickness has a small negative 70 

trend during 2003-2008 (Kurtz and Markus, 2012). September Antarctic sea ice extent has 71 

increased by 0.24×10
6
 km

2
 per decade during 1979-2014, with a pronounced positive trend of 72 

sea ice concentrations in the Ross Sea partially offset by a negative trend in the Bellingshausen 73 

and Weddell Seas (Fig. 1b). The limited understanding of some of the mechanisms responsible 74 

for the observed decrease (increase) in Arctic (Antarctic) sea ice makes sea ice prediction 75 

challenging (e.g., Kattsov et al., 2010; Richter-Menge et al., 2012; Bindoff et al., 2013; Goosse 76 

et al., 2015). 77 

Most sea ice predictability studies have focused on the Arctic and the 78 

seasonal-to-interannual time scale. An outlook of September Arctic sea ice extent has been 79 

solicited from research community since 2008. Stroeve et al. (2014) showed that the median July 80 

(the same was true for June and August) prediction value for September sea ice cover was off by 81 

a large margin in 2009, 2012 (record low), and 2013. Koenigk and Mikolajewicz (2009) 82 

suggested sea ice cover has low predictability in the central Arctic but some predictability at sea 83 

ice edge zones in the MPI ECHAM5-OM climate model. Holland et al. (2011) showed potential 84 

predictability of sea ice cover with a few months lead-time in the NCAR Community Climate 85 

System Model version 3 (CCSM3). They also suggested that the persistence of sea ice thickness 86 

anomalies is much higher than that of sea ice extent anomalies, which might point to a pathway 87 

towards greater predictability as models improve their simulation of sea ice thickness. 88 
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Predictability of sea ice cover with e-folding time scales of 2-5 months has been identified in 89 

several climate models (Day et al., 2014a). A few modeling studies also showed continuous 90 

predictability of sea ice cover for 1-2 years, and intermittent predictability for 2-4 years 91 

(Blanchard-Wrigglesworth et al., 2011b; Day et al., 2015; Tietsche et al., 2013, 2014; Guemas et 92 

al., 2014). In contrast to the Arctic, there are limited efforts on examining predictability of 93 

Antarctic sea ice. Using the NCAR CCSM3 model, Holland et al. (2013) showed initial-value 94 

predictability of sea ice for a few months in the edge around Antarctica. 95 

To date, relatively little attention has been paid to assessing prediction skill of sea ice at 96 

decadal timescales for the Arctic and Antarctic in current-day climate models. Decadal sea ice 97 

prediction entails a combination of initial value and climate forcing issues. At decadal timescales, 98 

internal climate variability affects sea ice (i.e., some aspects of climate internal variability may 99 

be predictable, Collins and Allen, 2002; Smith et al., 2007; Keenlyside et al., 2008; Meehl et al., 100 

2009; Pohlmann et al., 2009; Mochizuki et al., 2012), as does prescribed external scenarios (e.g., 101 

greenhouse gases and other radiatively important agents). Blanchard-Wriggleworth et al. (2011b) 102 

suggested that predictability of Arctic sea ice beyond 3 years is largely influenced by climate 103 

forcing rather than initial values. The growing dominance of climate forcings is likely to 104 

introduce some potential predictability since it accounts for increasingly large portions of sea ice 105 

change from present conditions (e.g., National Research Council, 2012). Guemas et al. (2014) 106 

also underlined that predicting future change of Arctic sea ice on decadal timescales is 107 

challenging due to initialization problems (i.e., the initial shocks due to sparse observations, 108 

limitations of reanalysis data, and ensemble generation methods). 109 

The recent Coupled Model Intercomparison Project Phase 5 (CMIP5) has implemented an 110 

experiment to simulate and predict decadal climate variability (Meehl et al., 2009; Taylor et al., 111 
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2012) in support of the Intergovernmental Panel in Climate Change Fifth Assessment Report. 112 

The validation of decadal hindcasts is an important step for improving decadal predictions, since 113 

it can elucidate issues in initialization methods and model responses to natural variability and 114 

climate forcings. In this study, we examine the capability of CMIP5 decadal hindcasts to 115 

simulate the mean and decadal variability of Arctic and Antarctic sea ice extent. 116 

2. Models and data 117 

Eleven CMIP5 models are used to evaluate the decadal hindcast/prediction of sea ice in both 118 

the Arctic and Antarctic. These eleven models provide a set of 10-year long hindcast simulations, 119 

which was initialized every five-years from 1981 to 2006. The purpose of initialization is to start 120 

coupled global climate models close to the most realistic possible sea ice state. In general, the 121 

initialization for the CMIP5 decadal hindcast/prediction can be divided into two approaches, full 122 

initialization and anomaly initialization. For the full initialization approach, the initial model 123 

state is replaced by the best available estimate of the observed sea ice state (i.e., satellite 124 

observation and ocean analysis). This efficiently reduces the initial error due to the systematic 125 

bias in the presence of model deficiencies. However, as the model is integrated for the decadal 126 

hindcast/prediction, the simulation tends to drift away from the best-estimated sea ice state no 127 

matter how small the initial error is. The anomaly initialization approach partly addresses this 128 

problem by assimilating observed sea ice anomalies on the modeled sea ice state with focus on 129 

predicting future sea ice anomalies. 130 

Table 1 provides a summary of the initialization approaches and data source of the initial sea 131 

ice state for each individual model. More detailed information about the set-up of the decadal 132 

experiment can be found in Meehl et al. (2009) and Taylor et al. (2012). For each individual 133 

model, all ensemble members of the 10-year long hindcast/prediction that are archived at 134 
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http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html are used (see Table 1 for more information). 135 

Each ensemble member was generated by slightly different initial conditions. Here we focus on 136 

September Arctic (seasonal minimum) and Antarctic (seasonal maximum) sea ice. The reasons 137 

that we focus on September Antarctic sea ice, rather than the month of seasonal minimum like 138 

the Arctic are 1) sea ice in the Antarctic largely melts away (confined to the coastal Antarctica) 139 

during the seasonal minimum (i.e. February or March), and 2) September sea ice extent has a 140 

significant increasing trend. 141 

Satellite-derived sea ice extent and concentration in the Arctic and Antarctic are used to 142 

evaluate the CMIP5 decadal hindcast. They are obtained from the National Snow and Ice Data 143 

Center, which are derived from the Nimbus-7 Scanning Mutichannel Microwave Radiometer 144 

(SSMR), and DMSP Special Sensor Microwave/Imager (SSM/I), and Special Sensor Microwave 145 

Imager and Sounder (SSMIS) sensors (Comiso 2000; Fetterer et al., 2002, 2010). Because the 146 

observation and models have different horizontal resolution (see details in Table 1), before 147 

performing the assessment we interpolate all the data (satellite observation and model 148 

simulations) to horizontal resolution of 1 degree. The multi-model ensemble mean (MMEE) is 149 

calculated based on the equally weighted average of 69 total ensemble members (Table 1). 150 

3. Prediction skill of CMIP5 decadal hindcasts 151 

3.1 Arctic sea ice 152 

We evaluate the model simulation and prediction skill by comparing sea ice extent between 153 

each individual model and satellite observations. Figure 2 shows the time series of September 154 

Arctic sea ice extent from the simulation of the 10-year hindcast for each model and observation 155 

from 1981 to 2015. It is immediately apparent that the models exhibit very different magnitudes 156 

of September sea ice extent. CanCM4, CFSv2, GEOS-5 and GFDL-CM2.1 simulate a smaller 157 
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ice extent compared to the observation during the entire period; CFSv2 has the least sea ice cover 158 

of any of the models. By contrast, BCC-CSM1.1, CCSM4, FGOALS-g2 and MIROC5 simulate 159 

a larger ice extent. The simulated ice extent of HadCM3, IPSL-CM5A-LR and MPI-ESM-MR 160 

are comparable to the observations, but they cannot reproduce the anomalously low sea ice cover 161 

since 2007 (i.e., record lows in 2007 and 2012). We note that the models that are initialized with 162 

values close to various estimates of sea ice state (direct and indirect full-field initialization, see 163 

Table 1), drift towards their modeled sea ice state within a few year integrations, particularly 164 

BCC-CSM1.1, CanCM4, CCSM4, CFSv2 and FGOALS-g2. Hence improved initializations do 165 

not necessarily mitigate drift, although they significantly reduce the model bias at the initial step. 166 

By contrast, the models that are initialized with various estimates of sea ice anomaly (direct and 167 

indirect anomaly initialization) tend to have smaller drift problems during the integration. 168 

To quantify the skill of each individual model and MMEE in predicting the evolution of sea 169 

ice, we calculate the anomaly correlation coefficient (ACC) between the predicted and observed 170 

September sea ice concentration anomaly in each grid box as follows. 171 

    
                               
   

                                   
   

 
   

 

where P is the predicted sea ice concentration and       is calculated as               
   ; O is 172 

the observed sea ice concentration and       is calculated as               
   . i is the start 173 

year and t is the lead year. Here the ACCs of the ensemble mean of each individual model and 174 

MMEE for lead-times of 1, 3-5 and 6-8 years are discussed. For example, for the lead-time of 175 

3-5 years, the data for the 1981 initialization is the average value of 1983-1985, the data for the 176 

1986 initialization is the average value of 1988-1990, and so on. This means the adjacent data 177 
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points in the time-series have a time interval of 5-years, and this time-series is compared to the 178 

average of the same three years in the observations. 179 

For the lead-time of 1-year, for some models only scattered predictive skill (> 95% 180 

significance) in forecasting September sea ice concentration anomalies are found, generally in 181 

the arc around the periphery of the Arctic Basin extending from north of Alaska to northeast of 182 

Siberia (top panel of Fig. 3). The MMEE shows small clustered areas of significant ACCs 183 

between the Beaufort and eastern Siberian Seas, whereas areas near the central Arctic Ocean has 184 

the least predictive skill (negative ACCs, Fig. 3l in the top panel). In general, the areas of 185 

significant ACCs in CCSM4, MIROC5 and MPI-ESM-MR are similar to that of the MMEE. 186 

For the lead-time of 3-5 years, the areas of significant predictive skill become broader for 187 

the majority of the models compared to those of 1-year, covering large parts of the northern 188 

Beaufort, Chukchi, eastern Siberian and Laptev Seas (bottom panel of Fig. 3). The exceptions are 189 

CFSv2 and GEOS-5. CFSv2 has too little sea ice cover in the Arctic Ocean due to the 190 

aforementioned drift problem. The ACCs of GEOS-5 for the lead-time of 3-5 year are even 191 

smaller than those of 1-year for the area of ACCs exceeding the 95% confidence level. The 192 

MMEE shows large clustered areas of significant ACCs in the arc around the Arctic Basin 193 

extending from north of Alaska to north of Siberia (Fig. 3l in the bottom panel). Again, the 194 

central Arctic Ocean towards the Canadian Archipelago and northern Greenland Sea shows the 195 

least predictive skill. 196 

The results for the lead-time of 6-8 years are broadly similar to those of the lead-time of 3-5 197 

years, although the areas of significant predictive skill are relatively broader for the majority of 198 

the models (not shown). The MMEE also shows enlarged areas of significant ACCs relative to 199 
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those of 3-5 year, i.e., along the eastern coast of the Greenland (not shown). Overall, the MMEE 200 

has better prediction skill relative to individual models for all lead times, although the MMEE 201 

does not universally outperform every single constituent models. 202 

Figure 4 shows the predicted trend (slope of a linear regression) as a function of lead times 203 

after applying a 3-year average to filter out high frequency variability. For each individual model, 204 

the trend is calculated based on its ensemble mean (see No. of ensemble members in Table 1). 205 

All the models reproduce the observed negative trend, except that BCC-CSM1.1 has positive 206 

trend at the lead-time of 1-3 and 2-4 years. However, the simulated negative trends show very 207 

different magnitude, ranging from about -0.2 to -0.9×10
6
 km

2
 per decade. Compared to the 208 

observation, there is a systematic underestimation of the decreasing trend throughout the 209 

integration period for all decadal hindcasts. This is particularly true for the lead-time of 6-8 and 210 

7-9 years (i.e., about -0.6×10
6
 km

2
 per decade for the MMEE vs. -1.2×10

6
 km

2
 per decade for the 211 

observation), because those longer lead times are weighted towards inclusion of more recent 212 

years in the observations with accelerated decline of Arctic sea ice. 213 

To figure out to what extent the identified areas with significant ACCs at different lead times 214 

are caused by the decadal decreasing trend, we remove the linear trend in the predicted and 215 

observed sea ice concentration in each grid box. As shown in Fig. 5, after the trend is removed, 216 

the areas with significant ACCs become much smaller relative to those of Fig. 3, especially for 217 

the lead-time of 3-5 and 6-8 years. This suggests that high predictability found in Fig. 3 at longer 218 

time scales is largely due to the decreasing Arctic sea ice in recent decades. Thus the relatively 219 

long prediction skill over the areas of the northern Beaufort, Chukchi, eastern Siberian and 220 

Laptev Seas is influenced by long-term sea ice reduction. 221 
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To further examine the prediction skill of Arctic sea ice variability in the context of regional 222 

climate variability, we generate three sea ice extent indices: 1) the entire Arctic, 2) the north 223 

Pacific, and 3) the north Atlantic. Sea ice variability in the north Pacific and north Atlantic is 224 

modulated by different dominant decadal oscillations. Previous studies suggested that sea ice in 225 

the Bering and Beaufort Seas is correlated with the Pacific Decadal Oscillation (PDO), which 226 

has undergone a transition from a dominantly positive phase to a more negative phase in recent 227 

decades (Lindsay and Zhang 2005; Zhang et al., 2010; Wendler et al., 2014). Sea ice in the north 228 

Atlantic, particularly the ice export through Fram Strait and import from the Barents Sea, is 229 

significantly affected by the phases of the North Atlantic Oscillation (e.g., Kwok, 2000; Rigor 230 

and Wallace, 2004). Enfield et al. (2001) linked North Atlantic sea ice variability to the Atlantic 231 

Multidecadal Oscillation (AMO) using the time frequency analysis of historical and paleo 232 

records. Day et al. (2012) suggested that up to 30% of the north Atlantic sea ice decline during 233 

1979-2010 might be attributed to the natural cycle of the AMO by analyzing five CMIP3 models. 234 

Here we define the north Pacific sea ice index as the total September sea ice extent in the 235 

Chukchi, East Siberian, and Laptev Seas (120°E-150°W and 62.5°N-80°N). The north Atlantic 236 

sea ice index is defined as the total September sea ice extent in the Greenland, Norwegian, and 237 

Barents Seas (40°W-80°E and 60°N-84°N, see boxes in Fig. 1). A 3-year average is also applied 238 

to these indices. 239 

The predictive skill for these indices is also measured by the anomaly correlation coefficient 240 

between the model hindcast and observation. Figure 6 shows the ACC as a function of lead times 241 

for the ensemble mean of each individual model and MMEE. To provide additional perspective 242 

on the relative skill of the decadal experiments, the anomaly correlation coefficient of the 243 

persistence prediction is also shown. Persistence prediction is the simplest way to produce a 244 
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forecast, which assumes sea ice state at the time of the forecast will not change. The horizontal 245 

lines in Fig. 6 represent different confidence level. For the entire Arctic (Fig. 6a), the anomaly 246 

correlation coefficient of most models exhibits certain predictive skill (> 95% significance), 247 

except BCC-CSM1.1 for the lead-time of 1-3 and 2-4 years. Four models (CCSM4, FGOALS-g2, 248 

GFDL-CM2.1 and MIROC5) show comparable or better predictive skill relative to the 249 

persistence prediction for all the analyzed lead-times. The MMEE has more skillful results than 250 

most of the individual model predictions during the entire period. The north Pacific sea ice index 251 

has lower prediction skill and larger inter-model spread compared to those of the entire Arctic 252 

index (Fig. 6c). In the north Pacific, only two models (GFDL-CM2.1 and MIROC5) show 253 

comparable skill to the persistence prediction for the lead-time of 1-3 and 2-4 years. After 3-5 254 

years, six models (CanCM4, CCSM4, FGOALS-g2, GFDL-CM2.1, MIROC5 and 255 

MPI-ESM-MR) have better skill than the persistence prediction, which is also the case for the 256 

MMEE. In general, the predictive skill of the north Atlantic sea ice index is poor compared to 257 

both the entire Arctic and north Pacific indices, particularly for the lead-time from 3-5 to 5-7 258 

years (insignificant ACCs). However, we note that in the north Atlantic sector all the models 259 

show better predictive skill than the persistence prediction for the first three lead-times. 260 

Additionally, all the models, except CanCM4, appear to have a re-emerging predictive skill for 261 

the north Atlantic sea ice after 6-8 years (Fig. 6e). Overall, the MMEE has more skillful results 262 

than that of the persistence prediction. 263 

After removing the linear trend (Fig. 6b, d, f), the predictive skill of the above indices 264 

decreases dramatically with very large inter-model spread. The MMEE only shows more skillful 265 

results than the persistence prediction between 3-5 and 5-7 years for the north Pacific index. 266 

3.2 Antarctic sea ice 267 
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Here we apply the same analysis in section 3.1 for Antarctic sea ice. Figure 7 shows time 268 

series of September sea ice extent from the 10-year hindcast for each individual model and the 269 

observations during 1981-2015. FGOALS-g2, GEOS-5, and MIROC5 produce significantly less 270 

sea ice compared to the observation for the entire period with GEOS-5 having the smallest sea 271 

ice extent of all the models. BCC-CSM1.1, CanCM4, and HadCM3 produce more sea ice 272 

relative to the observations. The sea ice extent simulated by CCSM4, CFSv2, GFDL-CM2.1, 273 

IPSL-CM5A-LR and MPI-ESM-MR is comparable to the observations, but they cannot 274 

reproduce the gradual increase of Antarctic sea ice in recent years (e.g., Comiso et al., 2011). As 275 

in the Arctic, the models that use direct and indirect full-field initialization tend to drift towards 276 

their modeled sea ice state within a few years of initialization. 277 

Figure 8 shows the anomaly correlation coefficient of each individual model and MMEE for 278 

the lead-time of 1 and 3-5 years. For the 1-year lead-time, small scattered areas with predictive 279 

skill greater than 95% confidence level in the Southern Ocean are found in most models. The 280 

location of these scattered areas differs by model, although the MMEE shows small clustered 281 

areas of significant ACCs in the central Weddell Sea (top panel of Fig. 8l). There is no 282 

improvement for the predictive skill for most models and the MMEE as the lead-time increases 283 

to 3-5 years (bottom panel of Fig. 8) and 6-8 years (not shown). Overall, the predictive skill of 284 

the MMEE does not outperform most models for all the lead-times. 285 

The observed and predicted trends for different lead times are shown in Fig. 9. The observed 286 

trends are positive for all the lead-times, and increase to ~0.35×10
6
 km

2
 per decade as recent 287 

years are considered. By contrast, most models show negative trends, i.e., BCC-CSM1.1 has 288 

negative trends ranging from -0.6×10
6
 km

2
 to -1×10

6
 km

2 
per decade. CCSM4 and FGOALS-g2 289 

have increasing trends before 3-5 year and 5-7 year leads, respectively, but decreasing trends 290 
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thereafter. CFSv2 shows increasing trends after 2-4 year leads. However, these three 291 

positive-trending models cannot simulate the magnitude of observed positive trends. 292 

Again, we remove linear trends in both the model hindcast and observation, and then 293 

calculate the ACC. After the linear trend is removed, the areas having significant predictive skill 294 

become broader for the majority of the models compared to those of the raw data (Fig. 10 vs. Fig. 295 

8), particularly for the lead-time of 3-5 and 6-8 years. Moreover, most models and the MMEE 296 

have good predictive skill in the Ross Sea. As indicated by the MMEE, much of Antarctica’s 297 

coast has poor predictive skill (negative ACCs, Fig. 8l). 298 

Here we generate three regional sea ice extent indices: 1) the entire Antarctic, 2) the 299 

central-eastern south Pacific and 3) the south Atlantic. We define the central-eastern south 300 

Pacific index as the total September sea ice extent in the eastern Ross, Bellingshausen and 301 

Amundsen Seas (165°W-75°W and 50°S-80°S) and the south Atlantic index as the total 302 

September sea ice extent in the Weddell Sea (60°W-0° and 50°S-75°S, see boxes in Fig. 1). 303 

Figure 11 shows the anomaly correlation coefficient as a function of lead times for the 304 

ensemble mean of each individual model, the MMEE and the persistence prediction. For the 305 

entire Antarctic, none of models can predict the observed sea ice variability (i.e., their 306 

simulations are negatively correlated with the observations), except for CCSM4 and 307 

GFDL-CM2.1, which show significant prediction skill (> 95% significance) at the lead-time of 308 

1-3 years (Fig. 11a). Moreover, the persistence prediction is superior to the prediction of each 309 

individual model and the MMEE. For the central-eastern south Pacific index, almost all the 310 

models show poor predictive skill for almost all the lead-times, although CFSv2, GFLD-CM2.1 311 

and HadCM3 exhibit significant skill at 1-3, 2-4 and 4-6 years, respectively. Unlike the entire 312 
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Antarctic, the MMEE of the central-eastern south Pacific shows better skill than that of the 313 

persistence prediction, although neither is statistically significant (Fig. 11c). For the south 314 

Atlantic index (Fig. 11e), almost all the models also do not have predictive skill (the ACCs are 315 

not statistically significant), although CCSM4 has significant skill at the lead-time of 5-7 years. 316 

However, the MMEE shows surprisingly significant skill, much better than the persistence 317 

prediction, at 6-8 years (> 95% significance). 318 

After removing linear trends in Fig. 11a, c, e, we note that there is no obvious improvement 319 

in predictive skill for the entire Antarctic and the central-eastern south Pacific indice, but the 320 

inter-model spread is increased (Fig. 11b, d). It is also noted that for the south Atlantic index, the 321 

MMEE shows significant skill after 4-6 years (Fig. 11f).  322 

4. Discussion and conclusion 323 

This assessment provides a snapshot of the interannual to decadal predictability of sea ice in 324 

the Arctic and Antarctic for the current-day coupled global climate models as part of the CMIP5 325 

decadal prediction experiment. 326 

Our evaluation shows that for many models, there are substantial discrepancies between the 327 

decadal hindcast and observed September sea ice extent. For instance, in the Arctic, as 328 

mentioned previously, CFSv2 dramatically underestimates September sea ice cover, leading to 329 

pronounced drift in the first three years of the decadal hindcast. In contrast, CFSv2 simulates a 330 

larger March sea ice extent (2-3×10
6
 km

2
 more than the observation, not shown). Hence there is 331 

an excessive melt of sea ice through the melting season which is due to not only the 332 

underestimate of observed September sea ice cover, but also the overestimate of observed March 333 

sea ice cover (March minus September). Such large errors have the potential to propagate 334 
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through other components of the climate system. This excessive melt greatly increases 335 

freshwater in the Arctic Ocean and export of fresh water through Fram Strait into the northern 336 

Atlantic. Following Koenigk et al. (2007), we calculate the freshwater export through Fram strait 337 

using the following formula:  338 

      
      

    
 

  

    

 

   

     

where B is the bottom of the ocean layer (here B = 100m), T is ocean surface; x0 and x1 are end 339 

points of the selected cross-section (here the cross-section is along 74°N and between 30°W and 340 

10°E); S, Sref are salinity and reference salinity (Sref = 34.8 psu). As shown in Fig. 12, there is a 341 

pronounced increase of the freshwater export through Fram Strait into the northern Atlantic 342 

during the first 4 years of integration, although the amount of the freshwater export decreases 343 

gradually after that. Such freshwater propagation into the North Atlantic results in a weakening 344 

of deep water formation in the Greenland Sea. Also shown in Fig. 12, the volume transport of the 345 

Atlantic Meridional Overturning Circulation (AMOC) at 40°N in CFSv2 (which is too weak at 346 

the beginning of the integration) decreases substantially during the decadal hindcast (4Sv after 347 

10-year integration), which is a factor of 3-4 smaller than the observation (18.7Sv in 348 

Cunningham et al., 2007; 17.2Sv in Smeed et al., 2014; McCarthy et al., 2015). Thus incorrect 349 

prediction of sea ice in the Arctic could influence the AMOC prediction, which is a key source of 350 

decadal predictability for European climate (Jackon et al., 2015), and has global impacts at 351 

longer timescales. 352 

It is well-known that brine rejection during sea ice growth strongly influences the formation 353 

of the Antarctic Bottom Water (AASW). In the Antarctic, as mentioned previously, GEOS-5 354 

simulates much less September sea ice extent, a factor of about 6 less than the observation, 355 
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which is also the case for March sea ice extent (not shown). The underestimation of sea ice 356 

coverage might result in insufficient brine rejection through the freeze-up period in the GEOS-5. 357 

This insufficient brine rejection is due to not only the underestimate of observed September sea 358 

ice cover alone, but also the underestimate of observed March sea ice cover. Export of AABW 359 

constitutes a key component of the meridional overturning circulation in the Southern Ocean 360 

(Lumpkin and Speer 2007). The systematic underestimation of sea ice coverage results in a 361 

weaker Deacon Cell in the Southern Ocean (~4Sv, Fig. 13) compared to the estimate of 20Sv 362 

from Döös et al. (2007). Therefore, models that have large biases in simulating sea ice extent 363 

(e.g., CFSv2 for the Arctic, GEOS-5 for the Antarctic) result in degraded predictive skill in sea 364 

ice as well as other variables. 365 

By performing the anomaly correlation analysis, we found that in the Arctic most models 366 

only show small clustered areas with significant predictive skill at the lead-time of 1-year. As the 367 

lead-time increases, for most models, the areas with significant predictive skill expand, covering 368 

much of the northern Beaufort, Chukchi, eastern Siberian, and Laptev Seas. Such expansion is 369 

largely due to the fact that almost all the models can predict observed negative trends of Arctic 370 

sea ice, although the magnitude of the trend simulated by most models is still smaller than 371 

observed. After the linear trend is removed, the areas with significant predictive skill at longer 372 

time scales shrink greatly. 373 

The analysis of regional indices suggests that sea ice in the Atlantic side has lower 374 

predictability than that of the Pacific side. This is perhaps counterintuitive, since the AMO is 375 

well predicted compared to the PDO (Kim et al., 2012). We do note that, for the Atlantic side of 376 

the Arctic, most models show re-emerging predictive skill at the lead-time of 6-8 years. This 377 

might be associated with the existence of interior AMOC pathways. A stronger (weaker) AMOC 378 
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results in warming (cooling) in the subpolar gyre after several years, contributing to enhanced 379 

decadal predictability of sea ice in the north Atlantic sector (e.g., Mahajan et al. 2011; Zhang and 380 

Zhang, 2015). In contrast to our results focusing on September sea ice, some idealized modeling 381 

studies (Koenigk and Mikolakewicz 2009; Koenigk et al., 2012), which assess predictive skills 382 

relative to their model climate, suggested annual and decadal mean sea ice concentration has 383 

higher potential predictability for the Atlantic side than that of the Pacific side. Germe et al. 384 

(2014) showed that the potential predictability of the winter Arctic sea ice extent comes mainly 385 

from the Atlantic sector, while the Pacific sector seems unpredictable beyond the first year.  386 

Further research is needed to explore the differences across model configurations. 387 

By contrast, Antarctic sea ice does not show promising predictive skills at longer time scales. 388 

Unlike in the Arctic counterpart, there is no obvious change in the areas showing significant 389 

predictive skill as the lead-time increases. This might be because most models cannot predict 390 

observed increasing Antarctic sea ice in recent decades. Instead almost all decadal hindcasts 391 

predict a decrease of Antarctic sea ice, which is also true for the simulation in recent decades and 392 

in response to forced simulations that include increased greenhouse gases in the atmosphere (e.g., 393 

Liu and Curry, 2010; Turner et al., 2013; Shu et al., 2015). Further investigating a range of other 394 

variables such as simulated sea ice thickness, sea ice velocity, near surface wind, and ocean 395 

stratification will help elucidate the reasons why the trends in these models are different from 396 

observations. However, after the trend is removed, most models suggest that large parts of the 397 

eastern south Pacific do have some predictive skill. Previous studies (e.g., Liu et al., 2002) have 398 

showed that the intensification of the Hadley Circulation in the eastern equatorial Pacific during 399 

El Nino leads to an equatorward shift of the storm track in the eastern south Pacific. This leads to 400 

the changes of the regional Ferrel Circulation in the eastern Pacific, which cause an anomalous 401 
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poleward mean meridional heat flux into the sea ice zone in the eastern south Pacific and limits 402 

sea ice growth there. Thus, relatively good sea ice predictability in the eastern south Pacific 403 

might be related to the ENSO teleconnection. Holland and Raphael (2006) further showed that a 404 

number of climate models have the ability in simulating the observed ENSO teleconnection in 405 

sea ice in the eastern south Pacific and Atlantic. The analysis of regional indices suggests that the 406 

MMEE has skillful results in the south Atlantic beyond 4-6 years, whether or not the trend is 407 

removed. 408 

An issue in this assessment is the relatively small sample size because of the limited number 409 

of start years of the decadal prediction experiment. To promote both the science and practice of 410 

decadal prediction, the CMIP phase 6 recommends ensembles of 10-year hindcast/prediction for 411 

all years from 1960 to the end of the CMIP6 period (10 members recommended), which will be 412 

helpful to obtain better statistics. As demonstrated in this study and previous studies, large biases 413 

in models strongly influence sea ice prediction at decadal time scales. Thus continued efforts are 414 

needed to identify, understand and reduce model errors, i.e., Kharin et al. (2012) demonstrated a 415 

technique to correct non-linear drifts in decadal hindcasts. Some multi-model studies put efforts 416 

on this issue for some climate variables (e.g., Bellucci et al., 2014; Doblas-Reyes et al., 2013; 417 

Goddard et al., 2012).  418 

Recent studies suggested that different initialization approaches and the density of 419 

observations used in the initialization significantly affect the predictability of sea ice. Zunz et al. 420 

(2015) tested three initialization approaches and found that the spread of ensembles at decadal 421 

time scales can be reduced when more complicated data assimilation procedures and denser 422 

observations are used to initialize the hindcasts. To date, only limited models have implemented 423 

initialization of sea ice concentration (see Table 1 for details). Moreover, to better predict sea ice, 424 
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the accurate sea ice initialization requires not only sea ice concentration, but also variables (i.e. 425 

sea ice thickness) influence surface energy fluxes and, thereby, ocean-atmosphere interaction. At 426 

seasonal timescales, the initialization of sea ice thickness has been shown to be crucial for 427 

summer prediction (e.g., Day et al. 2014b). Some studies (e.g., Blanchard-Wrigglesworth et al. 428 

2011a; Koenigk and Mikolajewicz, 2009) suggested that the persistence of sea ice thickness 429 

anomalies is much higher than that of sea ice concentration anomalies. Higher predictability of 430 

Arctic sea ice thickness (volume) with respect to that of Arctic sea ice cover has been found at 431 

longer time scales (e.g., Guemas et al., 2014). However, sea ice thickness has not yet been 432 

initialized in CMIP5 models because of sparse observations. In this assessment, based on Table 1, 433 

11 CMIP5 models can be separated into two groups: direct and indirect sea ice initialization. The 434 

direct initialization includes CanCM4, CFSv2 and GEOS-5. Other models are indirect 435 

initialization. Based on this division, we cannot conclude that the models initialized directly has 436 

better performance on predictive skills compared to those initialized indirectly. CanCM4 has 437 

broader area with significant predictive skill at longer lead-times (Figure 3). Its predictive skill is 438 

better than some models (e.g., BCC-CSM1.1, HadCM3, IPSL-CM5A-LR), comparable with 439 

CCSM4 and GFDL-CM2.1, but worse than MIROC5 and MMEE. On the other hand, CFSv2 has 440 

strong model drift so that the predicted sea ice is substantially less than the observations. 441 

GEOS-5 has nearly no skill on predicting observed sea ice variability. From this comparison, it is 442 

not clear whether direct sea ice initialization is better than indirect sea ice initialization. Other 443 

processes important for simulating sea ice evolution include the ocean below sea ice (i.e., 444 

temperature and salinity), which, due to its long persistence time, provides constraints on 445 

predictions of sea ice at longer time scales. Thus, efforts should be devoted to further 446 

development of initialization of the Arctic Ocean and Southern Ocean, which requires sufficient 447 
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observations and improved assimilation methods. 448 
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Figure Captions: 676 

Figure 1. Linear trends of September sea ice concentration for (a) Arctic and (b) Antarctic during 677 

the period of 1979-2014. The meshed areas denote the trends above 95% confidence level. Boxes 678 

indicate the areas used to generate the regional sea ice indices. 679 

Figure 2. Time series of September Arctic sea ice extent (seasonal minimum) from the 680 

simulations of the 10-year hindcast for each ensemble member of each individual model (thin 681 

gray line), the ensemble mean of each individual model (thick red line) and satellite observation 682 

(black line) from 1981 to 2015. 683 

Figure 3. Anomaly correlation coefficients between the simulated and observed Arctic 684 

September sea ice concentration anomalies for the lead-time of 1-year (top panel) and 3-5 years 685 

(bottom panel). The correlation coefficient 0.61, 0.73 and 0.88 represents 90%, 95% and 99% 686 

confidence levels, respectively. 687 

Figure 4. The predicted trends (slope of a linear regression) of September Arctic sea ice extent 688 

anomalies as a function of the lead-time after applying a 3-year average. 689 
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Figure 5 same as Figure 3, but for detrended September sea ice concentration anomalies. 690 

Figure 6. Anomaly correlation coefficients between the simulated and observed Arctic 691 

September sea ice extent anomalies for the three regional indices (the entire Arctic, Pacific and 692 

Atlantic) as a function of the lead-time. The top and bottom panels are the original and detrended 693 

time series, respectively. The horizontal dashed and solid lines represent 90%, 95% and 99% 694 

confidence levels, respectively. The thick gray line is the persistence prediction. 695 

Figure 7. Time series of September Antarctic sea ice extent (seasonal minimum) from the 696 

simulations of the 10-year hindcast for each ensemble member of each individual model (thin 697 

gray line), the ensemble mean of each individual model (thick red line) and satellite observation 698 

(black line) from 1981 to 2015. 699 

Figure 8. Anomaly correlation coefficients between the simulated and observed Antarctic 700 

September sea ice concentration anomalies for the lead-time of 1-year (top panel) and 3-5 years 701 

(bottom panel). The correlation coefficient 0.61 ,0.73 and 0.88 represents 90%, 95% and 99% 702 

confidence levels, respectively. 703 

Figure 9. The predicted trends (slope of a linear regression) of September Antarctic sea ice extent 704 

anomalies as a function of the lead-time after applying a 3-year average. 705 

Figure 10. same as Figure 8, but for detrended September sea ice concentration anomalies. 706 

Figure 11. Anomaly correlation coefficients between the simulated and observed Antarctic 707 

September sea ice extent anomalies for the three regional indices (the entire Antarctic, eastern 708 

Pacific and Atlantic) as a function of the lead-time. The top and bottom panels are the original 709 

and detrended time series, respectively. The horizontal dashed and solid lines represent 90%, 95% 710 

and 99% confidence levels, respectively. The thick gray line is the persistence prediction. 711 
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Figure 12. (a) Freshwater export through Fram Strait (the cross-section along 74°N and between 712 

30°W and 10°E), (b) Atlantic Ocean meridional overturning streamfunction in September 713 

averaged for all decadal hindcasts from 1981 to 2015 for the CFSv2 (upper panel) and (c) time 714 

series of stream function averaged over 40-55N, 500-1500m as indicated by the black in upper 715 

panel (lower panel). The thin gray line represents each ensemble member and the thick black line 716 

represents the ensemble mean. 717 

Figure 13. Atlantic Ocean meridional overturning streamfunction in September averaged for all 718 

decadal hindcasts from 1981-2015 for GEOS-5 (upper panel) and time series of stream function 719 

averaged over 45-70N, 500-2000m as indicated by the black in upper panel (lower panel). The 720 

thin gray line represents each ensemble member and the thick black line represents the ensemble 721 

mean. 722 

  723 
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Table 1 Summary of initialization methods and data sources used for the CIMP5 decadal 724 
hindcast/prediction 725 

Model 

Resolution 

(sea ice 

model) 

Ensemble 

members 
Sea ice assimilation method and data source 

BCC-CM1.1 
1 lon x 1-1/3 

lat 
4 

None, but the initial sea ice indirectly 

influenced by nudging T to SODA ocean 

reanalysis 

CanCM4 
~2.8 lon x 2.8 

lat 
10 

Full-field using SIC from HadISST1.1 and 

SIT from model-based climatology 

(Merryfield et al., 2013) 

CCSM4 
0.9 lon x 1.25 

lat 
10 

Full-field using bias-corrected CORE2-forced 

ocean hindcast 

CFSv2 
0.5 lon x 0.5 

lat 
4 

Full-field using NCEP climate forecast 

system reanalysis 

FGOALS-g2 1 lon x 1 lat 3 
None, but the initial sea ice indirectly 

influenced by nudging T and S to an ocean 

reanalysis 

GEOS-5 1 lon x 1 lat 3 Full-field using GEOS-iODAS 

GFDL-CM2.1 
~1 lon x 0.75 

lat 
10 

None, but the initial sea ice indirectly 

influenced by atmospheric and ocean data 

(Msadek et al. 2014) 

HadCM3 
1.25 lon x 

1.25 lat 
10 

Anomaly-field using Met Office Hadley 

Centre sea ice data (HadISST) 

IPSL-CM5A-LR ~2 lon x 2 lat 6 
None, but the initial sea ice indirectly 

influenced by the assimilation of T and S 

anomalies from observations 

MIROC5 1 lon x 1 lat 6 

None, but the initial sea ice is indirectly 

influenced by the assimilation of T and S from 

an objective analysis of Ishii and Kimoto 

(2009) 

MPI-ESM-MR 
~0.4 lon x 0.4 

lat 
3 

None, but the initial sea ice indirectly 

influenced by the assimilation of T and S 

anomalies from a forced ocean run using 

NCEP reanalysis (Müller et al., 2012) 

SIC: sea ice concentration; SIT: sea ice thickness, T: ocean temperature, S: salinity 726 
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727 
Figure 1. Linear trends of September sea ice concentration for (a) Arctic and (b) Antarctic during 728 
the period of 1979-2014. The meshed areas denote the trends above 95% confidence level. Boxes 729 
indicate the areas used to generate the regional sea ice indices. 730 
 731 
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 732 

Figure 2. Time series of September Arctic sea ice extent (seasonal minimum) from the 733 
simulations of the 10-year hindcast for each ensemble member of each individual model (thin 734 
gray line), the ensemble mean of each individual model (thick red line) and satellite observation 735 
(black line) from 1981 to 2015. 736 
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 737 

Figure 3. Anomaly correlation coefficients between the simulated and observed Arctic 738 
September sea ice concentration anomalies for the lead-time of 1-year (top panel) and 3-5 years 739 
(bottom panel). The correlation coefficient 0.61, 0.73 and 0.88 represents 90%, 95% and 99% 740 
confidence levels, respectively. 741 
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 742 

Figure 4. The predicted trends (slope of a linear regression) of September Arctic sea ice extent 743 
anomalies as a function of the lead-time after applying a 3-year average. 744 
  745 
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 746 

Figure 5 same as Figure 3, but for detrended September sea ice concentration anomalies. 747 
  748 
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 749 

Figure 6. Anomaly correlation coefficients between the simulated and observed Arctic 750 
September sea ice extent anomalies for the three regional indices (the entire Arctic, Pacific and 751 
Atlantic) as a function of the lead-time. The top and bottom panels are the original and detrended 752 
time series, respectively. The horizontal dashed and solid lines represent 90%, 95% and 99% 753 
confidence levels, respectively. The thick gray line is the persistence prediction. 754 
  755 

The Cryosphere Discuss., doi:10.5194/tc-2016-97, 2016
Manuscript under review for journal The Cryosphere
Published: 10 May 2016
c© Author(s) 2016. CC-BY 3.0 License.



 42 

 756 
 757 
Figure 7. Time series of September Antarctic sea ice extent (seasonal minimum) from the 758 
simulations of the 10-year hindcast for each ensemble member of each individual model (thin 759 
gray line), the ensemble mean of each individual model (thick red line) and satellite observation 760 
(black line) from 1981 to 2015. 761 
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 762 
 763 
Figure 8. Anomaly correlation coefficients between the simulated and observed Antarctic 764 
September sea ice concentration anomalies for the lead-time of 1-year (top panel) and 3-5 years 765 
(bottom panel). The correlation coefficient 0.61 ,0.73 and 0.88 represents 90%, 95% and 99% 766 
confidence levels, respectively. 767 
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 768 
 769 
Figure 9. The predicted trends (slope of a linear regression) of September Antarctic sea ice extent 770 
anomalies as a function of the lead-time after applying a 3-year average. 771 
  772 
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 773 
 774 
Figure 10. same as Figure 8, but for detrended September sea ice concentration anomalies. 775 
  776 
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 777 
 778 
Figure 11. Anomaly correlation coefficients between the simulated and observed Antarctic 779 
September sea ice extent anomalies forthe three regional indices (the entire Antarctic, eastern 780 
Pacific and Atlantic) as a function of the lead-time. The top and bottom panels are the original 781 
and detrended time series, respectively. The horizontal dashed and solid lines represent 90%, 782 
95% and 99% confidence levels, respectively. The thick gray line is the persistence prediction. 783 
  784 
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 785 
 786 
Figure 12. (a) Freshwater export through Fram Strait (the cross-section along 74°N and between 787 
30°W and 10°E), (b) Atlantic Ocean meridional overturning streamfunction in September 788 
averaged for all decadal hindcasts from 1981 to 2015 for the CFSv2 (upper panel) and (c) time 789 
series of stream function averaged over 40-55N, 500-1500m as indicated by the black in upper 790 
panel (lower panel). The thin gray line represents each ensemble member and the thick black line 791 
represents the ensemble mean.  792 
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 793 
 794 
Figure 13. Atlantic Ocean meridional overturning streamfunction in September averaged for all 795 
decadal hindcasts from 1981 to 2015 for GEOS-5 (upper panel) and time series of stream 796 
function averaged over 45-70N, 500-2000m as indicated by the black in upper panel (lower 797 
panel). The thin gray line represents each ensemble member and the thick black line represents 798 
the ensemble mean. 799 
 800 
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